History and Philosophy of QFT Tutorial (FI-MHPST1L)

Utrecht University, 2025

Period: Block 2 [10-11-2025 until 30-01-2026]

Timeslot: C/D [Tuesday 13:00–17:00, Friday 13:15–15:00]

Course load: 7.5 EC

Supervisor: Guido Bacciagaluppi TA: Noemi Bolzonetti

Organisers: Paolo Dioni & Luuk Kuiper

Overview: This course concerns the history and conceptual development of Quantum Field Theory (QFT). It will go through various foundational episodes and discuss the philosophical problems and proposed solutions throughout these periods. Examples of discussions that will be covered are *particle localisation*, *QFT ontologies*, and *axiomatic quantum field theory*. Each week's discussion will be explored through a close reading of two papers and a guest lecture by an expert on the subject. Through the study and discussion of these topics and their historical background, this course aims to offer an overview of QFT in broad strokes, an in-depth discussion of philosophical aspects of QFT, and an understanding of why certain programs within the QFT paradigm were developed and gained popularity.

Structure: This course will meet twice a week. The Tuesday meeting will feature a guest lecture (2 hours), followed by a discussion on the lecture and initial thoughts on the readings (2 hours). The Friday meeting will feature a student-led in-depth discussion focused on the submitted questions (2 hours).

Assessments: Every Thursday (from week 2 to week 8), students will submit a short (max one page) motivated critical question on the assigned literature, aimed at deepening understanding or producing discussion of core aspects of the works (80%). The lowest of these question assignment grades shall not be counted. Additionally, students shall be graded for their role in leading a specific Friday discussion session, for which they are expected to prepare a short introduction and discussion questions (20%).

Week-by-week of the course:

Session	Dates	Торіс	Papers	Guest Lecturer
1 (week 46)	11-11 14-11	Introduction: Path Integrals	Weinberg, 1995 ¹ Kuhlman, 2020 ²	Stefan Vandoren (UU)
2 (week 47)	18-11 21-11	Locality I	Muller & Berkovitz, 2022 ²⁵	F.A. Muller (EUR & UU)
3 (week 48)	25-11 28-11	Ontology	Gasparinetti & Collavini, forthcoming ²⁴ Swanson, 2024 ⁴ (Swanson, 2017 ³)	Luca Gasparinetti (U Milan) Aaron Collavini (U Udine)
4 (week 49)	02-12 05-12	Renormalization	Williams, 2022 ⁵ Butterfield, 2015 ⁶ (Fraser, 2020 ⁷)	Antonio Ferreiro de Aguiar (UU)
5 (week 50)	09-12 12-12	Locality II	Muller & Berkovitz, 2022 ²⁵	F.A. Muller (EUR & UU)
6 (week 51)	16-12 19-12	Axiomatic QFT	Haag & Kastler, 1964 ¹⁰ Fewster & Rejzner, 2019 ¹¹	Guido Bacciagaluppi (UU)
7 (week 3)	13-01 16-01	Effective Field Theories	Rivat & Grinbaum, 2019 ¹² Williams, 2019 ¹³ (Bain, 2013 ¹⁴ Hartmann, 2001 ¹⁵)	Sebastian de Haro (UvA)
8 (week 4)	20-01 23-01	History of QFT	Schweber, 1994 ²¹ Blum, 2017 ²²	Stefano Furlan (UU)

Bibliography:

- 1. Weinberg, S. (1995). The Quantum Theory of Fields. Volume 1: Foundations. Cambridge: Cambridge University Press.
- 2. Kuhlmann, M. (2023). "Quantum Field Theory." In E. N. Zalta & U. Nodelman (eds.), The Stanford Encyclopedia of Philosophy (Summer 2023 Edition). Stanford: Metaphysics Research Lab.
- 3. Swanson, N. (2017). "A Philosopher's Guide to the Foundations of Quantum Field Theory." Philosophy Compass, 12(5), e12414.
- 4. Swanson, N. (2024). "Three Field Ontologies for QFT." Preprint, PhilPapers.
- 5. Williams, P. (2021). "Renormalization Group Methods." In E. Knox & A. Wilson (eds.), The Routledge Companion to Philosophy of Physics (ch. 26). London: Routledge. doi:10.4324/9781315623818-26.
- 6. Butterfield, J. & Bouatta, N. (2014). "Renormalization for Philosophers." Preprint, arXiv:1406.4532.
- 7. Fraser, D. (2020). "The Development of Renormalization Group Methods for Particle Physics: Formal Analogies Between Classical Statistical Mechanics and Quantum Field Theory." Synthese, 197, 3027–3063.
- 8. Halvorson, H. & Clifton, R. (2002). "No Place for Particles in Relativistic Quantum Theories?" Philosophy of Science, 69(1), 1–28. doi:10.1086/338939.
- 9. Halvorson, H. (2001). "Reeh–Schlieder Defeats Newton–Wigner: On Alternative Localization Schemes in Relativistic Quantum Field Theory." Philosophy of Science, 68(1), 111–133. doi:10.1086/392869.
- 10. Haag, R. & Kastler, D. (1964). "An Algebraic Approach to Quantum Field Theory." Journal of Mathematical Physics, 5, 848–861. doi:10.1063/1.1704187.
- 11. Fewster, C. J. & Rejzner, K. (2019). "Algebraic Quantum Field Theory an Introduction." Preprint, arXiv:1904.04051.
- 12. Rivat, S. & Grinbaum, A. (2019). "Philosophical Foundations of Effective Field Theories." Preprint, PhilSci-Archive (ID:16419).
- 13. Williams, P. (2019). "Scientific Realism Made Effective." British Journal for the Philosophy of Science, 70, 209–237. doi:10.1093/bjps/axx043.
- 14. Bain, J. (2013). "Effective Field Theories." In R. Batterman (ed.), The Oxford Handbook of Philosophy of Physics. Oxford: Oxford University Press. doi:10.1093/oxfordhb/9780195392043.013.0007.
- 15. Hartmann, S. (2001). "Effective Field Theories, Reductionism and Scientific Explanation." Studies in History and Philosophy of Modern Physics, 32(2), 267–304.
- Egg, M., Lam, V. & Oldofredi, A. (2017). "Particles, Cutoffs and Inequivalent Representations." Foundations of Physics, 47, 453–466. doi:10.1007/s10701-017-0069-4.
- 17. Allori, V. (2023). "Relativistic Pilot-Wave Theories as the Rational Completion of Quantum Mechanics and Relativity." In A. Oldofredi (ed.), Guiding Waves in

- Quantum Mechanics: 100 Years of de Broglie-Bohm Pilot-Wave Theory. Oxford: Oxford University Press.
- 18. Weinberg, S. (1997). "What is Quantum Field Theory, and What Did We Think It Is?" Preprint, arXiv:hep-th/9702027.
- 19. Bain, J. (1998). "Weinberg on QFT: Demonstrative Induction and Underdetermination." Synthese, 117, 1–30.
- 20. Williams, P., Dougherty, J. & Miller, M. E. (2024). "Cluster Decomposition and Two Senses of Isolability." Philosophy of Physics, 2, 12.
- 21. Schweber, S. S. (1994). QED and the Men Who Made It: Dyson, Feynman, Schwinger, and Tomonaga. Princeton: Princeton University Press.
- 22. Blum, A. S. (2017). "The State is Not Abolished, It Withers Away: How Quantum Field Theory Became a Theory of Scattering." Studies in History and Philosophy of Modern Physics, 60, 46–80. doi:10.1016/j.shpsb.2017.01.004.
- 23. Fraser, Doreen; Papageorgiou, Maria (2023). Note on episodes in the history of modeling measurements in local spacetime regions using QFT. The European Physical Journal H, volume 48, articolo numero 14. doi:10.1140/epjh/s13129-023-00064-1.
- 24. Gasparinetti, L. & Collavini A. (manuscript submitted 2nd round review), "Ontologies for Quantum Field Theory", Philosophy Compass.
- 25. Muller, F.A. & Berkovitz, Jossi (2022). (manuscript).